The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective
نویسندگان
چکیده
We provide a microscopic view of the role of halides in controlling the anisotropic growth of gold nanorods through a combined computational and experimental study. Atomistic molecular dynamics simulations unveil that Br adsorption is not only responsible for surface passivation, but also acts as the driving force for CTAB micelle adsorption and stabilization on the gold surface in a facet-dependent way. The partial replacement of Br by Cl decreases the difference between facets and the surfactant density. Finally, in the CTAC solution, no halides or micellar structures protect the gold surface and further gold reduction should be uniformly possible. Experimentally observed nanoparticle’s growth in different CTAB/CTAC mixtures is more uniform and faster as the amount of Cl increases, confirming the picture from the simulations. In addition, the surfactant layer thickness measured on nanorods exposed to CTAB and CTAC quantitatively agrees with the simulation results.
منابع مشابه
The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective† †Electronic supplementary information (ESI) available: Solvation structure of halides, electrostatic potentials at the interface, halide ions on the Au(111) surface in water, density profiles and electrostatic potential profiles for different CTAB/CTAC systems and conversion of the plasmon shift to the layer thickness. See DOI: 10.1039/c6cp01076h Click here for additional data file.
We provide a microscopic view of the role of halides in controlling the anisotropic growth of gold nanorods through a combined computational and experimental study. Atomistic molecular dynamics simulations unveil that Br(-) adsorption is not only responsible for surface passivation, but also acts as the driving force for CTAB micelle adsorption and stabilization on the gold surface in a facet-d...
متن کاملDefining rules for the shape evolution of gold nanoparticles.
The roles of silver ions and halides (chloride, bromide, and iodide) in the seed-mediated synthesis of gold nanostructures have been investigated, and their influence on the growth of 10 classes of nanoparticles that differ in shape has been determined. We systematically studied the effects that each chemical component has on the particle shape, on the rate of particle formation, and on the che...
متن کاملComparing signal amplification of thiocyanated Gold nanoparticles in the presence of different ions
Detecting is the most important section in all kinds of sensors. In this regard, the amplification of surface plasmon resonance intensity of gold colloids nanoparticles (GNPs) was studied in the presence of several ions. GNPs were synthesized and then capped by thiocyanate and characterized via DLS and TEM image. In the next step the effect of different concentrations of ions such as iron, copp...
متن کاملComparing signal amplification of thiocyanated Gold nanoparticles in the presence of different ions
Detecting is the most important section in all kinds of sensors. In this regard, the amplification of surface plasmon resonance intensity of gold colloids nanoparticles (GNPs) was studied in the presence of several ions. GNPs were synthesized and then capped by thiocyanate and characterized via DLS and TEM image. In the next step the effect of different concentrations of ions such as iron, copp...
متن کاملBiosynthesis and characterization of biogenic tellurium nanoparticles by using Penicillium chrysogenum PTCC 5031: A novel approach in gold biotechnology
Production of nanoparticles has been attractive by biological based fabrication as an alternative to physical and chemical approaches due to exceeding need to develop safe, reliable, clean and eco-friendly methods for the preparation of nanoparticle for pharmaceutical and biomedical applications. In the present study, biogenic tellurium nanoparticles (TeNPs) were successfully prepared using pot...
متن کامل